
LA-UR-78-2813

TITLE:
~$m
s FIED SOLUTION
FLOW PROBLEMS

AUTHOR(S):

SUBMITTED

C. W. Hirt

TO: Numerical Methods for

FOR FLUID

Partial
Differential Equations Seminar,
University of Wisconsin,
23 Ott 1978

NOTICE

rhts rqmrt w pfepared as an account of work

sponsotedby tbe Un,!ed StaIeIGovemmnt Mther. he
u“tted Sf.tm not the United State8 bp=!~n! .f

knef~, nor W of fhmr employees, not any 0(thttt
contrmtf.rs, s.bcontmc tort, .(thcu ?mployrm, nukes

any wumnty, express or mtphed. orauumcs any kmd
It. bll!lyot responubdlty fm theaccuracy .compl*lene~

.! uwf.lneu cd my mf.mut, on, hp%ratus, product w

proccu duclob?d, or fcprtwnu thal m u= would nol
,n(nngc OtlV1telY owwd flehu

By acceptance of this ●rticle for publication, the
publisher reoognizee the Government’s (license) rights
inanycopyrightand theGovernmentand itsauthoriaed
rcpregentatives have unrestricted right to reproduce in
whole or in part said article under any copyright
secured by the publisher.

The Lo~AltsmooScientific Laboratosyrequests thntthe
publi~her identify this ●rticle amwork pe~formed under
the auupice~ of the USERDA.

)alamos
scl-ntiflc laboratory

oftho University ofcalifornia
LOS ALAMOS, NEW MEXIC087S45

/\
An Allirmaiiv@Action/EqualOpportunityErnploye~

Ftwn) NII, H:lIi
S1. XII. WiL!!l
1/75

\

LJNITkX)STATES
I?NRRGY RESEARCH AND

DFWIH,OPMRNI’ADMINISTRATION
(X)NTRACTW.74(WRNG.,36

f?
/

.’‘;’J’:,.~1

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

ASSTRACT

A simplified algorithm is described for the numerical

solution of the Navier-Stokes equations. Because of its

simple construction, the algorithm serves as a good intro-

duction to numerical fluid dynamics as well as a basis for

developing many kind~ of new solution methode. m illus-

trate the flexibility of this algorithm simple modifications

are described for introducing internal obstacles, an accel-

erated steedy-state solution method, a potential flow op-

tion, and a method of increasing numerical accuracy.

I. INTRODUCTION

There are many advocates and practitioners of numerical

fluid dynamics. There are also nearly as many numerical

methods or codes. Host of these codes differ only in mat-

tere related to choices for finite difference approxima-

tions, tiundary condition options, 6pecial purpose features,

or other detaila. When stripped to thei”ressentials the

majority of solution methods reduce to relatively simple al-

gorithms.

In this lecture we first present such a stripped-down

●lgorithm for the numerical solution of the dynamics of

incompressible, Navier-Stokes fluid, This solution

●lgorithm (SOLA) is simple, straightforward, ●nd provides a

basis for learning the ●ssential ●lements needed to obtain

numerical solutions [1].

We shall then look at a variety of modifications and

extensions of the basic algorithm. For example, easy ways

of increasing accuracy, achieving fast steady-ctate solu-

tions, adding a potential flow option, or Including internal

obstacles. In addition to the modifications described here,

there are extended versions of SOLA available for treating

free-boundary problems (SOLA-SURF) [11, and compressibility

effects (SOLA-ICE) [2].

The presentation of a variety of modifications that may

be made to the SOLA code serves a dual purpose. Each modi-

fication focuses attention on some element of the basic al-

gorithm and ita relationship to the remaining elements.

These modifications also illustrate how easy it is to devel-

op new and powerful computational schemes for many different

applications.

The SOLA code described here is publically available

from the National Energy Software Center (formerly the

Argonne Code Center), 9700 South Cass Avenue, Argonne, IL

60439.

II. SOLA-A SOLUTION ALGORITHM FOR INCOMPRESSIBLE FLUID FLOW

The solution algorithm (SOLA) is a simplified version

of the Marker-and-Cell (MAC) method originally developed by

Harlow, et al. [3]. It ia a numerical method for the solu-

tion of the time-dependent, two-dimensional, Navier-Stokes

equations*

(1)

aJ?+&v+a#+#=-
[

22
%9Y+V %+Q#+i&at ax ay x ay ax 1

and the incompressibility condition

(2)

Here the velocity components (u,v) are in the coordinate di-

rections (x,y), p is the ratio of pressure to constant den-

sity. (gx? gy) are body accelerations, and v is a constant

coeff~cient of kinematic viscosity. The parameter (in set

to xero when calculations are to be performed in Cartesian

coordinates. By setting 4 ●qual to unity the equations are

those for cylindrical coordinates in whis”hx is the radial

direction and y the axial direction.

The basic solution technique contained in SOLA provides

solutions of Eqs. (l-2) in a rectangular region whose bound-

aries may be specified in various ways through the selection

of input parameters. In particular, options are available

for rigid walls with free-slip or no-slip tangential veloci-

ty conditions, as continuative outflow boundaries, or as

periodic boundaries. Constant prespure or specified inflow

and outflow boundaries are also easily added, as are inter-

nal obstacles, sources, aud sinks.

A. Numerical Approximations

The finite-difference mesh used in SOLA, see Fig. 1,

consists of rectangular cells of width 6X and height &y.

The mesh region containing fluid is composed of IBAR cells

in the x-direction, labeled with the index i, and JBAR cells

in the y-direction, labeled with the index j. The fluid re-

gion ia surrounded by a single layer of fictitious cells so

that the complete mesh consists of IBAR+2 by JBAR+2 cells,

The fictitious cells are used to set boundary conditions so

that the sams difference equations used in the Interior of

the mesh can also be used ●t the boundaries.

Fluid velocity components and pressures are located at

staggered cell positions as shown in Fig. 2. This stagger-

ing hae been chosen to simplify the difference approxima-

tion to Eqs. (l-2).

Subscrtpta are used to denote cell locations ●nd super-

script for the time level at which quantities ●re evalu-

atad, For ●%_ple, U;+%,, denotes the u-vmlocity at time n6t

located ●t the .ight side of cell (i,j).Using this nota-

tion the finita-difference ●quations used to approximation

the Nwier-litokes ●quations? Eqe. 1, have the form,

WAX

JBAR+l

1=1
(

2 IBAR+IIMAX
Ads of sylnnWtrywhenCyl*I

Fig. 1. General mesh arrangement, with fictitious
boundary cells shaded.

.

Fig. 2. Arrangement of finite difference variabla6
in a typical mesh cell.

ml
= t!%,j [(+6t p? -

‘i+%j z,j P~+~,j)16X + 9X -Fvx-mY-Ft.r

+VIsx
1

(3)

1+VIsY ,

where, e.g., FUX represents the expression used for the con-

vective flux of u in the x-directiont and VISX represents

the expression used for the viscous acceleration of u. Al1

terms on the .’ightside of !?q.(3) are evaluated using known

time level n quantities.

As far as the basic SOLA algorithm is concerned, the

difference expressions chosen for the convective and viscous

accelerations in Eq. 3 are immaterial~ provided the result-

ing equations lead to numerically stable approximations.

Thus, the user could readily insert other difference approx-

imations for FUX, VISX, etC., without having to change the

remainder of the algorithm (except possibly for boundary

condition changes needed to be consistent with the new ex-

pressions).

In the publically available version of SOLA a combina-

tion of ‘central” and ‘donor-cell. differencing is used for

the

the

convective fluxes. For example, FUY is approximated

expression#

1
[F~=q ‘i*,j*”i*,j* + alv~*,j*~ ‘“i*,j - ‘i*,j+l)

‘vi*,j-%ui*,j~ - aivi+%,j-%i(u~%,j-l -ui*,j)] .

by

Simple averages are used for quantities needed at locations

where they are not defined~ e.g”.~‘i+*,j+%
= 1/2 (U~+*,j +

‘i+%,j+l). The parameter a is a user Specified input con-

stant, whose value is between zero and one. When a is zero

the convective approximations are centered in space, but

when u equals one the approximations use the upstream or do-

nor-cell values of the quantities to be fluxed. Unfortu-

nately, the centered form leads to equetions that are compu-

nationally unstable [41. In general, a should be chosen

slightly larger than the maximum value occurring in the mesh

of I*I or I*I ●

.

U1 other convective flux contributions are approxi-

mated in SOLA in a fashion Similar to FUY. The viscous a+

celebrationsare approximated by central difference expres-

sions. For a complete set of difference equations, Ref. 1

should be consulted.

lhe velocities computed according to Eqs. (3) will not,

in general, satisfy the co3dition of incompressibility.

This candition, Eq. (2), for a typical cell (i,j) is approx-

im~ted as

n+l
)+ Ui+,j = o. (4)

To satisfy this condition the pressure in cell (i,j) is

suitably changed. For example, when the velocity divergence

is negative, corresponding to a net flow of fluid into the

cell, the pressure is increased to prevent the inflow. When

the divergence is positive, corresponding to a net outflow,

the pressure is reduced to prevent the outflow. If D is the

velocity divergence, then the pressure change needed to

drive D to zero is

6’=-@[2’t(3+i$41’
(5)

.
where (o is an over-relaxation parameter (1< w< 2). Once 6p

is determined, the cell pressure is updated to pi,j + 6P and

the four cell edge velocities are also updated to reflect

this change,

‘Mtj + ‘*#j * 6t 6p/6x

(6)

‘i,ji% + ‘i,j%
i 6t6p/6y ,

The pressure adjustments must be done iteratively, be-

cause a change h one cell will upset the b ante in neigh-

boring cells. Convergence f.sachieved when 411 cells have D

magnitudes iess than some small predetermined value. It can

be easily shown [5] that this iterative pressure ad;ustmcnt

ie equivalent tp solving a Poisson equation for the pres-

sure.

lb summarize the above steps, which make up a complete

computational cycle:

(1) Approximate new velocities are computed from the

explicit difference equations, Eq. (3).

(2) These velocities and cell pressures are then iter-

atively adjusted to satiafy the incompressibility con-

dition, Eq. (4).

(3) Finally the time is advanced to t+~t and the new

pressure and velocities may be used as starting values

for the next cycle of computation. Bookkeeping and

output are also done in this step as desired.

B. D6undary Conditions

To complete the basic SOLA method we must specify

boundary conditions. For convenience the code has four

boundary condition options that may be selected through in-

put parameters. These options are rigid free-slip and rigid

no-slip walls, continuative outflow boundaries, and periodic

boundaries.

All boundary conditions are imposed by suitably defin-

ing flow variables in the fictitious boundary cells. For

example, consider the left boundary:

(~) For a rigid, free-slip wall,

‘3/2,j = ‘“08 ‘l,j+% = ‘2,j+%

(2) Fora rigid, no-slip wall,

‘3/2,j =O,v
l,j++ = - v2,j+35

(3) For a continuative boundary,

‘3/2,j = ‘5/2,j’ ‘l,j% = ‘2,j+%

(4) For x-periodic boundaries, on the left

‘3/2,j = ‘IBAR+%,j ‘ ‘l,j+% = ‘IBAR,j+%

‘2.j+% = ‘IBAR+l,j+% ‘ ‘2,j = ‘IBAR+l,j

and on the right

‘IBAR+3/2,j = ‘5/2,j ‘ ‘IBAR+2,j+% = ‘3,j+% “

In addition to the above boundary conditicms the code

has a special section reserved where additional conditions

can be imposed. In all cases the additional conditions

override the standard ones. For example, specified inflow

or outflow bou,.*ariesare generated by setting the ficti-

tious cell and b~.undaryvelocities to the desired values.

For internal obstacles with shapes constructed by blocking

out mesh cells, we add in the special boundary condition

section statements that set all velocities in the blocked

out cells to zero.

c. Stability and Accuracy

To prevent numerical instabilities or inaccuracies,

certain restrictions must be observed in defining the mesh

increments 6X and ily,the time increment ~t, and the up-

stream differencing parameter a. For accuracy, the mesh in-

crements must be chosen to resolve the expected spatial var-

iations of all dependent v~::iables. Once a mesh has been

chosen, the choice of the time increment necessary for sta-

bility is governed by two restrictions. First, material

cannot be allowed to convect through more than one cell in

o~e time step, because the difference equations assume flux-

es only between adjacent cells. Thus, it is necessary that

&t satiafy,

for

l/3

‘“ ‘min{l%r‘ W
every cell in the mesh.

to 1/4 the minimum cell

(7)

Usually, 6t is chosen equal to

transit time. Second, when the

kinematic viscosity is nonzero, momentum must not diffuse

more than approximately one cell in one time step, or

o &t < 1/2;*2*2 (8)

when 6t has been selected to satisfy

etability conditions, the parameter a

isfy

l>a>max {1 I
U&t
x’ F&l} ●

the above accuracy tind

is then chosen to sat-

(!,)

This last condition is needed to elimin:~tean instability

that would otherwise develop because of the form chosen for

the convective fluxes.

~. Summary

The basic solution algorithm described above is pro-

gramed in a straightforward and concise way in the SOLA

code [1]. As it stands, it provides a powerful tool for the

sol!iti~nof many interesting flo~ problems. One of the most

powerf~l aspects of SOLA, however, 5s the ease with which it

can be modified or extended to handle ~.~wproblems. Several

exampies of this are outlined in the following sections,

which also include sample calculations illustrating a varie-

ty of possible applications.

111,. MODIFICATIONS OF THE BASIC ALGORITHt4

A. Additional Boundary Conditions

It has already been mentioned that additional exterior

and interio~ boundary conditions, beyond those already built

into the code, are easily added. To illustrate this capa-

bility let us consider the flow generated in the vicinity of

an abrupt pipe expansion, Fig. 3. A cylindrical mesh is

used that consists of 10+2 cells in the radial (x) direction

and 25+2 cells in the axial (y) direction. At the upstream,

or inppt end of the pipe, a 5 by 5 block of cells at the

outer radius has been defined as an obstacle region. This

is accomplished by inserting into the special boundary con-

dition section statements that set u=v=O at all faces of the

obstacle cells. The specified inflow velocity at the bottom

of the mesh is also defin~d in this section as a positive

unit v-velocity and zero u-velocity in the first 5 ficti-

tious cells at the bottom of the mesh. These values over-

ride the free-slip wall conditions set in the standard

boundary condition section. Flesh-sideboundaries were ini-

tialized as free-slip walls and the top was treated as a

continuative boundary.

The velocity results shown in Fig. 3 after 400 cycles

of time advancement, are stationary and show the preserce of

a large recirculation region existing downstream of the step

expansion. The length of this region agrees well with

available experimental data [61.

In an analogous way the user can introduce an almost

unlimited variety of interior and exterior boundary condi-

tions to fine obstacles, sources and sinks, and even the in-

fluence of flexible boundaries. In the latter case the

boundary is treated as a specified normal velocity free-slip

boundary. The velocities to be specified may come from a

coupled structure code or other source. This method only

works when the wall displacements are small compared to the

Ill,
111,
Ill,

1114

111,

Ill,
111#
Ill!
Ill,
’11,
11,
Ift
!/,

k
11,

l::
1,
I
I

Fig. 3. Velocity field in region of a sudden pipe enlargem-
ent. All vectors start at cell canters. A vector
length equal to horizontal cell size corresponds to
a speed of l/4 <he inlet speed.

mesh cell size, for then the apecifisation of the wall v-

locity at the originai wall locaticms instead of its actual

location, is a good approximation. Of course, all these

boundary condition options ?~e limited to boundaries that

coincide with mesh cell bo’.ndariee. Modifications needed to

treat more general shagw.sare considered in SOLA-SURF [1].

B. Steady-State Calr~lations

In many studtes, like that described above, the main

interest is in the a.<mptotically steady flow, and not in

the details Qf the transients leading up to tb~.s flow. In

these cases it has been shown by R. H. Hotchkiss that it is

often p’>ssibleto speed up the attainment of steady state by

limiting the pressure iteration to only one iteration per

tjme cycle. This is easily done by inputting in the code

a large value for the convergence criterion, EPSI. The

idea behind this technique is that wakes and other vorticity

containing regions can anly be generated by convective

transport carrying vorticity into the flow from boundaries

or other sources. While this is happening it is unnecessary

to exactly satisfy the incompressibility condition. Once

the flaw reaches a steady state the incompressibility condi-

tion will be satisfied, because otherwise the one pass taken

through the pressure iteration each cycle would alter the

velocity and pressure fields, that is, the flow would not be

steady.

In this way a considerable savings in computer time is

usually real~zed by eliminating a large number of unneces-

sary pressure iterations. When this scheme is used, how-

ever, the over-relaxation parameter, u, must not exceed uni-

ty, otherwise an instability may result. .

An example of the use of this technique is providet by

the abrupt expansion problem described in Sec. 111.A. In

the unmodified calculation, in which transients were comput-

ed accurately, it took approximately 23 sec of CDC-7600 com-

puter time to reach steady state. With the above modifica-

tion, steady state was reached in approximately 14 sec.

c. Potential Flow

Sometimes it is useful to have a potential flow solu-

tion to a particular problem. For those cases it isn’t nec-
essary to construct a new code, because SOLA can be easily

modified to do the job. The basis for this modification

comes from the observation that the finitedifferenced ulo-

❑entum equations, Eqs. (3), can be caat into an approxima-

tion for the potential flow equations in which the velocity

is equal to the gradient of a scalar potential. This iS

done by eliminating all body, convective, and viscous accel-

eration, and by setting the n-level velocities to zer~ in

step one of each solution cycle so that what remains is

n+l
%+?i,j =* (P:,j -P:+lrj)

Vn+l
i,j+% = * (P:,j)- P?<.j+l “

(lo)

Formally, we can identify 6tp with a velocity poten-

tial. The incompressibilitycondition is skill satisfied by

iterating on the pressure as in the full SOLA code, rindall

boundary conditions may be used without modification. Thus,

the only modification needed in SOLA to produce potential

flow solutions is to bypass most of step one in the usual

SOLA algorithm, such that Eqs. (3) are reduced to Eqs. (10).

In addition to being simple, this variation of the bas-

ic algorithm ia quite insv.ructive,for it emphasizes what is

omitted from the full equttions when the potential flow ap-

proximation is made. In particular, no information about

the velocity field is retained from cycle to cycle, except

for specified boundary velocities. If the boundary cotidi-

tions are time independent, then only one solution cycle is

n~eded to obtain the flow. Wo viscous effects may be in-
cluded, and no flow features can be convected about, because

these mechanisms have been omitted. “

When SOLA ie modified to have free su.cfaces,●s in the

SOLA-SURF code [1], this potential flow option can still be

used~ Lwt then it is also necessary to mcdify the free-sur-

face boundary condition for p, ●s described m Ref. 7.

The ●brupt ●xpancion problam used to illustrate the two

previous modifications can ●lso be used here. Figure 4

shows the velocity field gcneratod when potential flow is

●ssured. The flow field is completely ●atablished in one

.

Fig. 4-. Velocity field for potential flow at a region of
sudden pipe enlargement. compare with Fig. 3.

time ●tep (requiring 983 iterations). Notice? however~ that

the recirculation region ia ●ntirely ●bsent, b~cauae no

vorticity is allowed to ●xist in the flow region.

D. Second Order Accurate Difference A~roximation8

FinitQ-Difference ●pproximation ueed in the standard

versien of SOLA ●re first order ●ccurate, That in, they

have truncation ●rrors proportional to the first power of

the time increment, dt, ●nd the first power of the ●pace

increments 6x ●nd 6y. The ●dvantage of thee. ●pproximations

ia that they are simple and easy to keep computationally

stable. For a great many applications they also provide ac-

curate numerical solutiona. In some cases, however, it is
too costly to increase the number of cells to the point

where the resolution is fine ●nough for accurate first order

approximations, In these casest it iu often useful to have

a second order accurate method.

In SOLA, second order accuracy can be quickly incorpo-
rated, without the introduction of additional storage ar-

rays, by using a variant of a scheme employed by MacCormack

[81. The essence of this technique is best illustrated

through application to the one-dimensional Burger’s equa-

tion,

(11)

A finite-difference approximation to Eq. (11) that is analo-

gous to the approximations used in SOLA is

n+lU4 = u: + jt (-FUX + VISX)
J J

(12)

where

[(Fux”k $ $+1 - G;.l)- 4U;I ($+1 -2$+ +,)]

(13)

vIsx=-&;+l)- 2$+$1 “

fiere, as in SOLA, a=O results in ● centered difference ap-
proximation that is spatially second order accurate, but ●l-

●o unc-onditionallyunstable when v=G. An a value of unity

corresponds to upstream or donor cell differencing that is

first order ●ccurate and stable when

ki--ycl.

A better understanding of the role a plays to produce a
stablo ●lgorithm can be qaincd by checking how Eqs, (12)-

(13) ●pproximate L!qo (11). This is done by ●..anding the

difference ●quatlon in s Taylor series ●bout the point jdx

●nd n6t. Doing this w. find the following differential ap-

proximation,

In arriving at this result, a term involving 82u/3t2 has

been rewritten in terms of space derivatives by using the

Taylor expanded equation itself. This replacement is justi-

fied, because the difference equation requires only one ini-

tial condition so its differential approximation ehould

likewise require only one initial condition. The first term

on the right side of Eq. (14) i8 a diffusion term, When v=O

the remaining diffusion coefficient will be positive only

when

J2.1+3>*.
This result explains the SOLA rule-of-thumb stability re-

quirement, a>lu6t/6xl. When this condition is violated the

difference equations yield exponentially growing solutions

that are consequences of a negative diffusion coefficient.

To obtain second order accuracy we proceed as follows.
n+l

First, compute an estimate for Uj using the available n-

level quantities and ful~ upstream (a=+l) approximations.

Denote this estimate by u,,

n + 6t [- FUX + VISX];=l .
‘; = ‘j

(15)

Next, Xepeat this process by evaluating FUX and VISX using

the U*
~

values and full downstream (a=-1) approxtmationa.
**

Dsnote the new values by Uj ,

* + &t [-‘;’=‘j

Finally, the dealred

by

FUX + VISX];--l ● (16)

sacond order ●ccurnte values are given

Un+1
(
Un

j
- 1/2

j +U;*)”
(17)

That

Eqs.

this is second order accurate can be seen by combining

(15)-(17),

ntl-&un+&
‘j 2-I 1

~ u; + 6t [- FuX + VISX]:-l}

(18)

;+;= u.
{

& [-FUX + VISX]~=l+ [-FUX + VISX];=-l~ .

Recalling that u;
n+1

values are first order ●stimates for u
~’

the curly bracket is seen to contain an average Qf accelera-

tions evaluate~ at levels n and n+l and an average of accel-

eration evaluated with a=l and a--l. Tha net result after

Taylor expanding is that all first order 6t and first order

a truncation errors cancel? leaving a second order acrurate

approximation.

It might appear from Eq. (17) that an additional stor-

age array over the first order method is required in this

scheme to accommodate the u** values.
j

This is not the case,

however, if we rewrite the basic time advancement calcula-

tion as

G = f3f(u) + (1-B)G (19)

where f(u) represents the right side of Eq. (15) or (16).

During the first pass through Eq. (19) we use B-1 and u=un~

so that

●
u - G = f(un) .

Then we interchange storage arrays

During the second pass through Eq.

setting u*- u
*

and U=U .

(19) ~ is set ●qual to

1/2, and because of the interchanged ●rrays,

which is ●quivalent to Eq.(17).

A list of FORTRANstatements that may be ●dded to the
basic 80LA code listed in Ref. 1, to give it this mecond or-

der ●ccurate option, can be obtained by writing directly to

the author.

Because the second order method requires two passes

through the convective and viscous acceleration calculations

●ach cycle~ calculation times are correspondingly larger

than in the first order method. However, the increased ac-

curacy means that larger space and time increments can often

be used to reduce computation times. Unfortunately, it is

not always easy to decide ; priori when it is best to use a

finely resolved, fast, first order calculation or a coarsely

resolved, slow, second order calculation, In practice, a

useful procedure is to use the simpler firat order method

fot most calculation~, but to check accuracy with an occa-

sional second order calculation using the same mesh.

E. Additional modifications

Numerou&!other features have been added to the SOLA al-

gorithm at one time or another to achieve a variety of use-

ful capabilities. For ●xmple, automatic time step con-

trols, variable mesh increments (6x and 6y), marker

particles to trace flow patterns, a variable viscosity or

turbulence model, and a coupled density equation for the

study of stratified fluids.

Perhaps the moat important extensions that have been

made to SOLA ●re those contained in a eet of codes alsu

●vailable from the National Energy Software Center. These

codes are:

(1) SOLA-SURF, which has a free surface or rigid,

curved surface capability. The curved surfaces are

limited to configurations that are defined by their

height above the bottom of the computational mesh in

Sach column of cells.

(2) SOLA-ICE, which ●xtends the incompressible algo-

rithm in SOLA to compressible fluids, so that flows

containing shock and rarefaction waves may be computed.

Because of the implicit numerical formulation used in

this code it can ●lso be used for far subsonic (incom-

preaaibl,) flows.

In ●ddition, there ●re several other SOLA codes soon to

be installed in the Center. Theme consist of ● two-dimen-

sional code for tw-phase flow ●nalysis (SOLA-DF) [91, a

code for two-phase flow in networks composed of one-d imen-

sional components (SOLA-LOOP) [10], and a three-dimensional

version with a free surface capability (SOLA-3D) [111.
From the examples described here, it should be obvious

to the innovative user that these codes offer a basis for

the development of an almost unlimited variety of new codes.

In many cases the needed modifications can be made quickly

and easily, because of the simple construction of the basic

algorithms.

IV. Acknowledgments

The SOLA code series has resulted from the combined ef-

forts of many members of Group T-3 of the us Alamos Scien-

tific Laboratory. Particular r,ention,however, should be

made of N. C. Romero for his untiring programming efforts ir,

writing and maintaining nearly all of the &ode variations.

Al&o, a special thank you is extended to Juanita Salazar for

her excellent job in preparing this manuscript.

1.

2.

3*

4.

5.

6.

REFERENCES

Hirt, C. W., Nichols, B. D., and Romero, N. C., ‘SOLA-A

Numerical Solution Algorithm for Transient Fluid

F1ows,” Los Alamos Scientific Laboratory report LA-5852

(1975); LA-5852, Add. (1976).

Cloutman, L. D., Hirt, C. W., and Romero, N. C., “SOLA-

ICE: A Numerical Solution Algorithm for Transient Com-

pressible Fluid Flows,” Los A2amos Scientific Labora-

tory report, LA-6236 (1976).

HarLow, F. H. and Welch, J, E., ‘Numerical Calculation

of Time-Dependent Viscous Incompressible Flow,” Phys.

Fluids ~, 2182 (1965).

?iirt,C. W., ‘Heuristic Stability Theory fOr Finite-

Difference Equations,” J. Comp. Phya. ~, 339 (1968).

Viecelli, J. A., “A Computing Method for Incompressible

Flows Bounded by moving Walls,” ,7.Comp. Phys. ~, 119

(1971).

Teyseandier, R, G. and Wilson, U. P., ‘An Analysis of

Flow Through Sudden Enl&rgements in Pipes,’ J. Fluid

!lech.64, 85 (1974).

7.

8.

9.

10.

11.

Nichols, B. D. and Iilrt,C. W., ‘Nonlinear Hydrodynamic

Forces on Floating Bodies,” Proc. 2nd Intern. COnf.

Num. Ship Hydro., September 1977, Berkeley, CA, PP.

382-394.

UacConnack, R. W., ‘Numerical Solution of the Itilterac-

tion of a Shock Wave with a Laminar Boundary Layer,n

Proc. 2nd Intern. Conf. Num. Meth. in Fluid Dyn.,

Springer-Verlag, Berlin, 151 (1970).

Hirt, C. W. and Romero, N. C., “SOLA-DF: & Solution

Algorithm for Nonequilibrium Two-phase Flow,’ ~S

Alamos Scientific Laboratory report, in preparation.

Eiirt,C. W., Rivard, W. C., Romero, N. C., Oliphant* T.

A., and lbrrey, M. D., ‘SOLA-LOOP: A Non-Equilibrium,

Drift-Flux Code for Two-Phase Flow in Networks,” Los

Alamos Scientific Laboratory report, in preparation.

Stein, L. R. and Hirt, C. W., ●SOLA-3D: A Solution Al-

gorithm for Transient, Three-Dimensional Fluid Flows,”

Los ,Uamos Scientific Laboratory report, in prepara-

tion.

This wcrk was performed under the auspices of the

(InitedStates Department oi Energy.

Group T-3
Theoretical Division
University of California
Los Alamos Scientific Laboratory
Los Alamos, NH 87545

INDEX

Accuracy

Argonne Code Center

Boundary conditions

Burgerss Equation

Continuative Outflow

Donor-Cell Di~ferencing

Finite-Difference Equaticms

Fluid Dynamics

MacCormack Method

Marlcer-an&Cell

National Energy Software Center

Navier-Stokes Equations

Numerical Stability

Pipe Enlargement

Poisson Equation

Potential Flow

Second Order Accuracy

SOLA

SOLJt-ICE

SOLA-S[lRF

Solution Algorithm

Steady State

Truncation Error

,1

8

2

7

14

7

5

3

1

14

2

2

1,2

8,15

9

7

11

13

1

2,17

2,12,17

1

11

